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The exciton-phonon coupling has been studied iyGh_,N/GaN and GaN/AlGa, _,N multiple
guantum well§fMQWSs) and compared with that in {Ga, _,N and GaN epilayers. Phonon replicas
with up to four phonons can be well resolved only in the alloy regions of the MQWs
(In,Ga N or Al,Ga _,N) and was independent of the structgneell or barrie), while no phonon
replicas of the exciton transitions were observed for the free-exciton transitions in the GaN and the
localized exciton transitions in the ,J8a _,N epilayers. It thus suggests that the symmetry
properties of MQWSs, which modifies the phonon dispersion relation, together with alloy disorder
are responsible for the enhanced exciton-phonon interaction in lll-nitride MQW. The coupling
constant S of the exciton-phonon interaction is extracted for anQda_,N/GaN and
GaN/AlLGa _,N MQW, and is found to b&=0.802 and 0.556, respectively. The implications of
the modified exciton-phonon coupling in MQWSs in terms of understanding the fundamental physics
of this system as well as practical device applications are discussed99® American Institute of
Physics[S0003-695097)03821-7

The fabrication of GaN based devices such as blue-U\S. For the case of relatively strong coupling, the emission
lasers and light emitting diodgt EDs), solar-blind UV de- intensity of thenth phonon replicd ,(y) and the principle
tectors, and high-power electronics have fueled recent interemission line () is related b§’
sive research in these materialglost optoelectronic devices N
based on Ill nitrides are designed using quantum w@W) lh=lo—, n=012.... 2)
structures, InGaN/GaN or GaN/AlGaN, thus an understand- n!
ing of the basic physical properties of Ill-nitride QWS is |n this way, inspection of the emission specttg(y), for

especially important. Recent work on the optical propertiesy=0,1,2..., gives information on the carrier or exciton-
of Ill-nitride alloy systems and QWs has shown that local-phonon coupling constarg
ized exciton transitions dominate in these systems at low The wurtzite GaN epilayer, WBa_,N epilayer
temperatureé-* The interaction of the carrier or excitons (x~0.12, and InGa_,N/GaN MQW (x~0.15 samples
with the phonons in IlI-nitride materials is of interest due to stydied here were grown by low pressure metal-organic
the large longitudinal opticalLO) phonon energies of INN  chemical vapor depositioMOCVD). The MQW sample is
(86 me\) and GaN(91 me\).® The strength of this interac- composed of 20 periods of alternating 45 A®®_,N and
tion in various structures may determine the optical transi45 A GaN barriers. Prior to the deposition of the GaN and
tions in these structures. It may also determine the IasthGal_XN layers, a 50 nm GaN buffer layer was grown on
mechanisms in lGa _,N/GaN multiple quantum well g sapphire (AJO;) substrate. The wurtzite GaN/&ba, _ N
(MQW) blue lasers. However, this coupling strength has noMQW (x~0.07) sample was grown by reactive molecular
been studied previously in Ill-nitride systems. beam epitax(MBE) on a sapphire (ADs) substrate with a
When there is a strong exciton-phonon or carrier-phonormso nm AIN buffer layer. The MQW is composed of 10 pe-
interaction, the photoluminescen(®l) spectrum is charac- riods of alternating 25 A GaN wells and 50 A &8a,_ N
terized by a main emission line and several phonon replicagarriers. All of the samples are nominally undoped. The low

The emitted photon energdyv is given by temperature PL spectra were measured using a picosecond
laser spectroscopy systerm.
hv=E,—nE,, n=013..., D In Fig. 1, we have plotted the continuous-waegv) PL

. . o o spectra of (a) the MBE grown GaN/AlGa,_,N MQW
whereE, is the energy of the main emission peakjndi- sample, (b) the MOCVD grown GaN epilayer(c) the
cates the number of phonons involved, &ylis the phonon  \1ocvD grown InGa_,N/GaN MQW, and (d) the
energy involved. Within a Franck—Condon mofiéithe  \1i5cvD grown Ir;(Gai:);\l epilayer. In Fig. 1a), the
coupling of the exciton transitions to the LO phonon is eX-gan/Al Ga, N MQW sxhows a dominant transition at

. . . X —X
pressed by the exciton-phonon coupling const&8nffhe in- 3 541 ev from the GaN well region, as well as a transition at
tensity distribution of the phonon replicas is determined bys ¢95 eV from the AlGa, _,N barrier region. The well tran-
sition at 3.541 eV, due to excitons localized by interface
dElectronic mail: jiang@phys.ksu.edu roughness in the MQW,is blue shifted by 56 meV com-
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FIG. 2. (a) cw PL spectrum of the 45 A well k&a _,N/GaN MQW mea-
Energy (GV) sured afT=10 K. The solid line is a least squares fit using Gaussian func-
. tions (dotted line$. (b) cw PL spectrum of the 25 A well GaN/ABa _,N
FIG. 1. cw PL spectra ofe) a GaN/ALGa, N MQW, (k_)) a GaN epilayer, MQW measured af =10 K. Individual peaks were fit using Gaussian func-
(c) an InGa - ,N/GaN MQW, and(d) an InGa;_xN epilayer measured at  tjgng (solid lines.

T=10 K.
energy positions are separated by:84meV which is close

pared to the optical transition in the GaN epilayer. The domi-,[0 the longitudinal opticalLO) phonon energy of bulk InN
nating transition line af =10 K at 3.485 eV in GaN epilayer (86 meV).5 The transition lines at around 3.181, 3.102
s que g‘; the reco.mbination .qf thg ground state of e 3.019, and 2.931 eV thus correspond to the LO phonon rep-
exciton®” The domman_t transition linéat 3_.268 eV 1_‘or the licas (1, 2, 3, and 4L of the main emission line at 3.268 eV.
Ir.]X.Gai*XN/GaN MQW is due to the localized exmtop tran- The additional features evident in the cw PL emission
sition from. the IQGai.,.XN well region. Also apparent in the spectra of the GaN/AGa_,N MQW are shown more
spectrum IS an add|t|ongl' peak at 3.481 eV, 'at the,energ}flearly in Fig. Zb). There is no phonon replica of the tran-
correqundmg o a transition from tif€aN) barrler_reglon. sition from the GaN well region at 3.541 eV. However, four
TE.?t rgalk? pek:;,lk from the LGal*XN/G‘ZN MQ:V 'Sf blueh transition peaks at 3.692, 3.625, 3.558, and 3.489 eV are
shifted by about 75 meV compared to that from t eclearly resolved. We assign these to the zero to three phonon
ll.nXGai‘X'; epilayer of F'gl' 1d). The dom'”a”F transm%n replicas of the excitonic transition resulting from the
ine for.t € Ir;(Gai_xN.ep| ayer, at 3.193 eV, is f_rom the Al,Ga _,N barriers. The phonon replica emissions observed
recombination of localized excitons due to alloy disortler. in the GaN/ALGa,_,N MQW shown in Fig. 2b) are asso-
: ; . —x .

.However, more interesting are the addltlon_al featurest:iated with the LO phonons, except that they vibrate at the
which are clear in the MQW structures, but which are NotaN bulk TO frequency
?pparentNm elllther thle:. GaN ep;:Iayer,h F'gflb)]' Er thelzl The relative intensities of the phonon replica peaks to
nGa N epilayer, ~19. ld) or t e o A We the zero-phonon emission line are plotted in Fig. 3, @r
In,Ga, _,N/GaN MQW, in addition to the main emission line the InGa,_,N/GaN and (b) the GaN/AGa,_,N MQW
at 3.268 eV, Fig. (c) shows that there are also more featuressample_ Thé least squares fit of the data with )((EQ.for the
on the low energy side. To illustrate this more clearly, theIn Ga_ N/GaN and GaN/AIGa, N MQW are shown as

— X —X —X

T=10K cw PL. spgctrum of the WBa; _N/GaN MQW has solid lines in Figs. &) and 3b), respectively. The fitted
been replotted in Fig.(@. In this plot, we concentrate on the values of the exciton-phonon coupling constant were found
behavior of the well transition. Five emission peaks, at api; pe 5=0.802 and 0556 for the 16a_,N/GaN and
proximately 3.268, 3.181, 3.102, 3.019, and 2.931 eV, have, \/a| Gal. N MQW s.amples respective_l;
been resolved using a multiple Gaussian fitting function, it isxinterésting to note thal) neither the high quality

4 A [4/n2 4/n2(Ei—Ec,i)2 GaN nor the high quality Ga, _,N epilayer have phonon
I(E)=2, T\ ——— 7|, O
=0 W; :

replicas in their emission spectra as indicated in Figb) 1
and Xd); (2) no phonon replica was observed for the transi-
whereA is the peak areay is the full width at half-maxi- tion from the GaN layer in either MQW, whether as the well
mum (FWHM), andE_. is the peak energy position. The peak layer in the GaN/AlGa, _,N MQW or the barrier layer in the
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12 N — . proportional to the ratio of the hole mass to electron mass
a=m,/m. For CdS, the LO phonon enerdy, is E,

1.09 D 1 =37.7 meV, while the electron and hole effective masses
0.8 T=10K ] are approximatelym\~0.18 my, and m;~0.19 my, and
v InGaN/GaN MQW Iy | . I
fit §=0.802 my=~5 my and m;~0.7 my, respectively, wheren' and

° 0.6+

E= i m' are the effective masses in the directions parallel and
0.4 . perpendicular to the axis of the crystals. For Gaki* the
LO phonon energyE,=91 meV, mi~m_~0.19m,, m,

0.2+
] ~2 my, andm}~0.33m,. From these numbers, we expect

0.0 — ; r . the exciton-phonon coupling constaatof the bulk GaN to
be approximately a factor of six smaller than that of CdS due

1.0+ ® .

MBE to its larger LO phonon energy and its smaller effective mass
0 8_' T=10K ] ratio of the hole to the electron. On the other hand, the cou-
' v GaN/AlGaN MQW | pling constant is expected to be changed in MQW structures
=° 061 fit$=0.556 | due to the modified phonon dispersion relation in MQWs.
— ] In summary, the exciton-phonon coupling has been stud-
0.4 . ied in InGa, _,N/GaN and GaN/AlGa,_,N MQWSs. The
coupling was found to be enhanced in alloy regions of the
0.21 i quantum wells compared to epilayers due to a combination
0.0 . — V ' of the symmetry properties of MQW and the effects of alloy
0 1 2 3 4 disorder. The coupling constan% were extracted for the
n In,Ga _,N/GaN and the GaN/AGa, _,N MQWSs, and were

FIG. 3. The ratio of the integrated PL emission intensities of the higherfound to beS= 0-8(_)2 and 0-5561 resPeCt?Vely- It is We_"
order phonon replica transitions to the zero phonon transition as a functioknown that the carrier-phonon interaction is one of the im-
of n, the number of phonons involved, for both) the InGa,_N/GaN  portant factors that determines the optical transition spectra

MQW and (b) the GaN/AlGa_,N MQW obtained at 10 K. The relative 54 the gain mechanism for lasing. The enhanced exciton-
intensities are fit using Ed2) to extract the exciton-phonon coupling con-

stants, which areS=0.802 and 0556 for the JBa_,N/GaN and the ~PhoOnon interaction in the j®a ,N/GaN and GaN/
GaN/ALGa,_,N MQW, respectively. Al,Ga _,N MQW systems will play an important role for

understanding the mechanisms of optical transitions in many
GaN based optoelectronic devices, including carrier relax-
ation, transformation, and recombination dynamics as well as
LED emission and laser mechanisms.

The research at Kansas State University is supported by
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